Backward bifurcation and optimal control in transmission dynamics of west nile virus.

نویسندگان

  • Kbenesh W Blayneh
  • Abba B Gumel
  • Suzanne Lenhart
  • Tim Clayton
چکیده

The paper considers a deterministic model for the transmission dynamics of West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough. The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of West Nile virus in mosquito, birds and humans with Season

In Canada the number of West Nile virus (WNv) infection of humans decreasing during the years of 2007-2010. However, it started increasing once more during last year 2011 despite the immense efforts exhibited by the specialized agencies to control the vector mosquitoes and the disease. In this study, we use mathematical models to study the behavior of the transmission of WNv in the mosquito-bir...

متن کامل

The backward bifurcation in compartmental models for West Nile virus.

In all of the West Nile virus (WNV) compartmental models in the literature, the basic reproduction number serves as a crucial control threshold for the eradication of the virus. However, our study suggests that backward bifurcation is a common property shared by the available compartmental models with a logistic type of growth for the population of host birds. There exists a subthreshold condit...

متن کامل

Mathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies

An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...

متن کامل

Aserological survey on antibodies against West Nile virus in horses of Khuzestan province

BACKGROUND: West Nile virus (WNV) is a vector-borneagent that is maintained within a bird-mosquito cycle. In humansand equids, infection by this agent is usually asymptomatic, orcharacterized by a mild febrile illness. However, fatal meningoencephalitisor encephalitis may occur. OBJECTIVES:The aim ofthis study was to evaluate the prevalence of WNVinfection andcorrelation of this organism with h...

متن کامل

Effect of bird-to-bird transmission of the West Nile virus on the dynamics of the transmission of this disease.

Two recent publications report that direct bird-to-bird transmission of West Nile virus is possible. The effect of a bird-to-bird transmission on the transmission dynamics of this virus is studied through mathematical modeling. The model still treats the bird-to-mosquito-to-bird as the main transmission route. The results of numerical calculations show that there are changes in the dynamics of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2010